Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.635
Filtrar
1.
J Colloid Interface Sci ; 666: 176-188, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593652

RESUMO

AIM: Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS: The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS: The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.


Assuntos
Catalase , Raios Ultravioleta , Catalase/metabolismo , Catalase/química , Humanos , Epiderme/efeitos da radiação , Epiderme/metabolismo , Epiderme/enzimologia , Pele/efeitos da radiação , Pele/metabolismo , Pele/química , Queratinas/química , Queratinas/metabolismo
2.
Front Cell Infect Microbiol ; 14: 1307374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660491

RESUMO

Cutaneous diseases (such as atopic dermatitis, acne, psoriasis, alopecia and chronic wounds) rank as the fourth most prevalent human disease, affecting nearly one-third of the world's population. Skin diseases contribute to significant non-fatal disability globally, impacting individuals, partners, and society at large. Recent evidence suggests that specific microbes colonising our skin and its appendages are often overrepresented in disease. Therefore, manipulating interactions of the microbiome in a non-invasive and safe way presents an attractive approach for management of skin and hair follicle conditions. Due to its proven anti-microbial and anti-inflammatory effects, blue light (380 - 495nm) has received considerable attention as a possible 'magic bullet' for management of skin dysbiosis. As humans, we have evolved under the influence of sun exposure, which comprise a significant portion of blue light. A growing body of evidence indicates that our resident skin microbiome possesses the ability to detect and respond to blue light through expression of chromophores. This can modulate physiological responses, ranging from cytotoxicity to proliferation. In this review we first present evidence of the diverse blue light-sensitive chromophores expressed by members of the skin microbiome. Subsequently, we discuss how blue light may impact the dialog between the host and its skin microbiome in prevalent skin and hair follicle conditions. Finally, we examine the constraints of this non-invasive treatment strategy and outline prospective avenues for further research. Collectively, these findings present a comprehensive body of evidence regarding the potential utility of blue light as a restorative tool for managing prevalent skin conditions. Furthermore, they underscore the critical unmet need for a whole systems approach to comprehend the ramifications of blue light on both host and microbial behaviour.


Assuntos
Luz , Microbiota , Pele , Humanos , Pele/microbiologia , Pele/efeitos da radiação , Dermatopatias/microbiologia , Disbiose/microbiologia , Animais , 60440
3.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 233-240, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650128

RESUMO

Skin photoaging affects appearance and is associated with a variety of skin diseases, even skin cancer. Therefore, the prevention and treatment of skin photoaging is very important. However, there is a lack of effective evaluation methods, so it is an urgent problem to explore a comprehensive, non-invasive and in vivo evaluation method. Adipose-derived mesenchymal stem cells (ADSCs) are widely used to improve skin conditions as easier to obtain and positive effects. Recently, as the development of ultrasound technology, skin ultrasound has been widely used. Changes in skin layer and structure can be observed by high-frequency ultrasound (HFUS). In addition, Shear wave elastography (SWE) technology can be used to monitor the change of skin hardness. However, it is necessary to further explore the ultrasound parameters in interpreting histological changes. We simulate the progression and treatment process of human skin photoaging by using UVB-induced nude mice skin photoaging model and ADSCs injection. The analysis of the degree and therapeutic effect of skin photoaging was conducted by HFUS, SWE and to verify with histopathology. Our study aims to clarify the value of HFUS combined SWE techniques in evaluating the degree and therapeutic efficacy of skin photoaging, which provides theoretical basis for diagnosis and treatment evaluation systems.


Assuntos
Células-Tronco Mesenquimais , Camundongos Nus , Envelhecimento da Pele , Pele , Raios Ultravioleta , Animais , Envelhecimento da Pele/efeitos da radiação , Células-Tronco Mesenquimais/citologia , Humanos , Pele/efeitos da radiação , Pele/patologia , Tecido Adiposo/citologia , Técnicas de Imagem por Elasticidade , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Feminino
4.
Skin Res Technol ; 30(4): e13714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650371

RESUMO

OBJECTIVE: Platelet-rich plasma (PRP) is recognized as a safe and effective therapy for regenerative skin healing and rejuvenation, utilizing autologous blood enriched with various growth factors. This review aims to assess the efficacy of PRP treatments for skin rejuvenation. METHODS: Keywords such as "platelet-rich plasma," "rejuvenation," "skin aging," and "wrinkles" were queried on Ovid, PubMed, and MEDLINE to identify pertinent studies on PRP treatment for skin rejuvenation. RESULTS: Analysis revealed that PRP treatment led to significant enhancements in multiple facial parameters after one to three sessions. Improvements were noted in skin pore size, texture, wrinkle reduction, pigmented spots, collagen density, hyaluronic acid levels, and protection against ultraviolet damage. Combining PRP with hyaluronic acid demonstrated a synergistic effect, particularly enhancing skin elasticity in patients with lower body mass index and firmness in individuals aged 50s and 60s. Incorporating both physical and biometric data for assessment proved superior to relying solely on physical observations for evaluating subtle skin quality and structural changes. CONCLUSION: This study underscores the efficacy of PRP monotherapy for skin rejuvenation and emphasizes the necessity of standardizing PRP preparation protocols in future investigations. Heightened awareness and advancements in technology have contributed to the emergence of higher-quality, less biased studies supporting PRP as a reliable and safe therapeutic option for skin rejuvenation.


Assuntos
Plasma Rico em Plaquetas , Rejuvenescimento , Envelhecimento da Pele , Humanos , Rejuvenescimento/fisiologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/fisiologia , Ácido Hialurônico , Pele/efeitos da radiação , Técnicas Cosméticas , Pessoa de Meia-Idade
5.
Photochem Photobiol Sci ; 23(4): 711-718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430370

RESUMO

BACKGROUND: Previous studies have shown that visible light (VL), especially blue light (BL), could cause significant skin damage. With the emergence of VL protection products, a harmonization of light protection methods has been proposed, but it has not been widely applied in the Chinese population. OBJECTIVE: Based on this framework, we propose an accurate and simplified method to evaluate the efficacy of BL photoprotection for the Chinese population. METHODS: All subjects (n = 30) were irradiated daily using a blue LED light for four consecutive days. Each irradiation dose was 3/4 MPPD (minimum persistent pigmentation darkening). The skin pigmentation parameters, including L*, M, and ITA°, were recorded. We proposed the blue light protection factor (BPF) metric based on the skin pigmentation parameters to evaluate the anti-blue light efficacies of different products. RESULTS: We found that the level of pigmentation rose progressively and linearly as blue light exposure increased. We proposed a metric, BPF, to reflect the anti-blue light efficacy of products based on the linear changes in skin pigment characteristics following daily BL exposure. Moreover, we discovered that the BPF metric could clearly distinguish the anti-blue light efficacies between two products and the control group, suggesting that BPF is an efficient and simple-to-use metric for anti-blue light evaluation. CONCLUSION: Our study proposed an accurate and simplified method with an easy-to-use metric, BPF, to accurately characterize the anti-blue light efficacies of cosmetic products, providing support for further development of anti-blue light cosmetics.


Assuntos
60440 , Pigmentação da Pele , Humanos , Luz , China , Pele/efeitos da radiação , Raios Ultravioleta
6.
Lasers Surg Med ; 56(4): 404-418, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436524

RESUMO

BACKGROUND AND OBJECTIVES: A threshold fluence for melanosome disruption has the potential to provide a robust numerical indicator for establishing clinical endpoints for pigmented lesion treatment using a picosecond laser. Although the thresholds for a 755-nm picosecond laser were previously reported, the wavelength dependence has not been investigated. In this study, wavelength-dependent threshold fluences for melanosome disruption were determined. Using a mathematical model based on the thresholds, irradiation parameters for 532-, 730-, 755-, 785-, and 1064-nm picosecond laser treatments were evaluated quantitatively. STUDY DESIGN/MATERIALS AND METHODS: A suspension of melanosomes extracted from porcine eyes was irradiated using picosecond lasers with varying fluence. The mean particle size of the irradiated melanosomes was measured by dynamic light scattering, and their disruption was observed by scanning electron microscopy to determine the disruption thresholds. A mathematical model was developed, combined with the threshold obtained and Monte Carlo light transport to calculate irradiation parameters required to disrupt melanosomes within the skin tissue. RESULTS: The threshold fluences were determined to be 0.95, 2.25, 2.75, and 6.50 J/cm² for 532-, 730-, 785-, and 1064-nm picosecond lasers, respectively. The numerical results quantitatively revealed the relationship between irradiation wavelength, incident fluence, and spot size required to disrupt melanosomes distributed at different depths in the skin tissue. The calculated irradiation parameters were consistent with clinical parameters that showed high efficacy with a low incidence of complications. CONCLUSION: The wavelength-dependent thresholds for melanosome disruption were determined. The results of the evaluation of irradiation parameters from the threshold-based analysis provided numerical indicators for setting the clinical endpoints for 532-, 730-, 755-, 785-, and 1064-nm picosecond lasers.


Assuntos
Lasers de Estado Sólido , Melanossomas , Animais , Suínos , Melanossomas/efeitos da radiação , Lasers , Pele/efeitos da radiação , Lasers de Estado Sólido/uso terapêutico , Resultado do Tratamento
7.
J Photochem Photobiol B ; 253: 112887, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460430

RESUMO

BACKGROUND: The underlying molecular mechanisms that determine the biological effects of UVB radiation exposure on human skin are still only partially comprehended. OBJECTIVES: Our goal is to examine the human skin transcriptome and related molecular mechanisms following a single exposure to UVB in the morning versus evening. METHODS: We exposed 20 volunteer females to four-fold standard erythema doses (SED4) of narrow-band UVB (309-313 nm) in the morning or evening and studied skin transcriptome 24 h after the exposure. We performed enrichment analyses of gene pathways, predicted changes in skin cell composition using cellular deconvolution, and correlated cell proportions with gene expression. RESULTS: In the skin transcriptome, UVB exposure yielded 1384 differentially expressed genes (DEGs) in the morning and 1295 DEGs in the evening, of which the most statistically significant DEGs enhanced proteasome and spliceosome pathways. Unexposed control samples showed difference by 321 DEGs in the morning vs evening, which was related to differences in genes associated with the circadian rhythm. After the UVB exposure, the fraction of proinflammatory M1 macrophages was significantly increased at both timepoints, and this increase was positively correlated with pathways on Myc targets and mTORC1 signaling. In the evening, the skin clinical erythema was more severe and had stronger positive correlation with the number of M1 macrophages than in the morning after UVB exposure. The fractions of myeloid and plasmacytoid dendritic cells and CD8 T cells were significantly decreased in the morning but not in the evening. CONCLUSIONS: NB-UVB-exposure causes changes in skin transcriptome, inhibiting cell division, and promoting proteasome activity and repair responses, both in the morning and in the evening. Inflammatory M1 macrophages may drive the UV-induced skin responses by exacerbating inflammation and erythema. These findings highlight how the same UVB exposure influences skin responses differently in morning versus evening and presents a possible explanation to the differences in gene expression in the skin after UVB irradiation at these two timepoints.


Assuntos
Complexo de Endopeptidases do Proteassoma , Pele , Feminino , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Eritema/etiologia , Macrófagos , Expressão Gênica
8.
Mar Biotechnol (NY) ; 26(2): 276-287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441733

RESUMO

The present study aims to characterize and to evaluate the biological effects of a skin dressing manufactured with the organic part of the Chondrilla caribensis marine sponge (called spongin-like collagen (SC)) associated or not to photobiomodulation (PBM) on the skin wound healing of rats. Skin dressings were manufactured with SC and it was characterized using scanning electron microscopy (SEM) and a tensile assay. In order to evaluate its biological effects, an experimental model of cutaneous wounds was surgically performed. Eighteen rats were randomly distributed into three experimental groups: control group (CG): animals with skin wounds but without any treatment; marine collagen dressing group (DG): animals with skin wounds treated with marine collagen dressing; and the marine collagen dressing + PBM group (DPG): animals with skin wounds treated with marine collagen dressing and PBM. Histopathological, histomorphometric, and immunohistochemical evaluations (qualitative and semiquantitative) of COX2, TGFß, FGF, and VEGF were done. SEM demonstrates that the marine collagen dressing presented pores and interconnected fibers and adequate mechanical strength. Furthermore, in the microscopic analysis, an incomplete reepithelialization and the presence of granulation tissue with inflammatory infiltrate were observed in all experimental groups. In addition, foreign body was identified in the DG and DPG. COX2, TGFß, FGF, and VEGF immunostaining was observed predominantly in the wound area of all experimental groups, with a statistically significant difference for FGF immunostaining score of DPG in relation to CG. The marine collagen dressing presented adequate physical characteristics and its association with PBM presented favorable biological effects to the skin repair process.


Assuntos
Bandagens , Colágeno , Poríferos , Pele , Cicatrização , Animais , Cicatrização/efeitos da radiação , Ratos , Colágeno/metabolismo , Pele/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Masculino , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Ratos Wistar , Fator de Crescimento Transformador beta/metabolismo , Resistência à Tração , Fatores de Crescimento de Fibroblastos/metabolismo , Microscopia Eletrônica de Varredura
9.
J Cosmet Dermatol ; 23(5): 1620-1628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38468421

RESUMO

BACKGROUND: Skin's exposure to intrinsic and extrinsic factors causes age-related changes, leading to a lower amount of dermal collagen and elastin. AIM: This study investigated the effects of a novel facial muscle stimulation technology combined with radiofrequency (RF) heating on dermal collagen and elastin content for the treatment of facial wrinkles and skin laxity. METHODS: The active group subjects (N = 6) received four 20-min facial treatments with simultaneous RF and facial muscle stimulation, once weekly. The control subject (N = 1) was untreated. Skin biopsies obtained at baseline, 1-month and 3-month follow-up were evaluated histologically to determine collagen and elastin fibers content. A group of independent aestheticians evaluated facial skin appearance and wrinkle severity. Patient safety was followed. RESULTS: In the active group, collagen-occupied area reached 11.91 ± 1.80 × 106 µm2 (+25.32%, p < 0.05) and 12.35 ± 1.44 × 105 µm2 (+30.00%, p < 0.05) at 1-month and 3-month follow-up visits. Elastin-occupied area at 1-month and 3-month follow-up was 1.64 ± 0.14 × 105 µm2 (+67.23%, p < 0.05), and 1.99 ± 0.21 × 105 µm2 (+102.80%, p < 0.05). In the control group, there was no significant difference (p > 0.05) in collagen and elastin fibers. Active group wrinkle scores decreased from 5 (moderate, class II) to 3 (mild, class I). All subjects, except the control, improved in appearance posttreatment. No adverse events or side effects occurred. CONCLUSION: Decreased dermal collagen and elastin levels contributes to a gradual decline in skin elasticity, leading to facial wrinkles and unfirm skin. Study results showed noticeable improvement in facial appearance and increased dermal collagen and elastin content subsequent to simultaneous, noninvasive RF, and facial muscle stimulation treatments.


Assuntos
Colágeno , Elastina , Músculos Faciais , Envelhecimento da Pele , Humanos , Elastina/análise , Elastina/metabolismo , Envelhecimento da Pele/efeitos da radiação , Colágeno/metabolismo , Colágeno/análise , Feminino , Pessoa de Meia-Idade , Adulto , Músculos Faciais/efeitos da radiação , Terapia por Radiofrequência/métodos , Terapia por Radiofrequência/efeitos adversos , Masculino , Terapia por Estimulação Elétrica/efeitos adversos , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Técnicas Cosméticas/efeitos adversos , Técnicas Cosméticas/instrumentação , Pele/efeitos da radiação , Pele/patologia , Face , Biópsia , Resultado do Tratamento
10.
Disaster Med Public Health Prep ; 18: e33, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38384188

RESUMO

The Radiation Emergency Assistance Center/Training Site (REAC/TS) is one of the US Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Emergency Response Team (NEST) assets and has been responding to radiological incidents since 1976. REAC/TS is in the Oak Ridge Institute for Science and Education (ORISE). A critical part of the REAC/TS mission is to provide emergency response, advice, and consultation on injuries and illnesses caused from ionizing radiation. Fortunately, radiation injuries are not frequent, but when they occur, they are more likely to be cutaneous radiation injuries (CRI) or internal contamination. In this paper, we will review selected cases from the REAC/TS experience in order to illustrate cutaneous patterns of injury and treatment options.


Assuntos
Lesões por Radiação , Pele , Humanos , Lesões por Radiação/etiologia , Lesões por Radiação/terapia , Pele/lesões , Pele/efeitos da radiação
11.
Radiother Oncol ; 194: 110183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423138

RESUMO

BACKGROUND: Toxicity after whole breast Radiotherapy is a relevant issue, impacting the quality-of-life of a not negligible number of patients. We aimed to develop a Normal Tissue Complication Probability (NTCP) model predicting late toxicities by combining dosimetric parameters of the breast dermis and clinical factors. METHODS: The skin structure was defined as the outer CT body contour's 5 mm inner isotropic expansion. It was retrospectively segmented on a large mono-institutional cohort of early-stage breast cancer patients enrolled between 2009 and 2017 (n = 1066). Patients were treated with tangential-field RT, delivering 40 Gy in 15 fractions to the whole breast. Toxicity was reported during Follow-Up (FU) using SOMA/LENT scoring. The study endpoint was moderate-severe late side effects consisting of Fibrosis-Atrophy-Telangiectasia-Pain (FATP G ≥ 2) developed within 42 months after RT completion. A machine learning pipeline was designed with a logistic model combining clinical factors and absolute skin DVH (cc) parameters as output. RESULTS: The FATP G2 + rate was 3.8 %, with 40/1066 patients experiencing side effects. After the preprocessing of variables, a cross-validation was applied to define the best-performing model. We selected a 4-variable model with Post-Surgery Cosmetic alterations (Odds Ratio, OR = 7.3), Aromatase Inhibitors (as a protective factor with OR = 0.45), V20 Gy (50 % of the prescribed dose, OR = 1.02), and V42 Gy (105 %, OR = 1.09). Factors were also converted into an adjusted V20Gy. CONCLUSIONS: The association between late reactions and skin DVH when delivering 40 Gy/15 fr was quantified, suggesting an independent role of V20 and V42. Few clinical factors heavily modulate the risk.


Assuntos
Neoplasias da Mama , Dosagem Radioterapêutica , Pele , Humanos , Feminino , Neoplasias da Mama/radioterapia , Pessoa de Meia-Idade , Pele/efeitos da radiação , Estudos Retrospectivos , Idoso , Lesões por Radiação/etiologia , Adulto , Órgãos em Risco/efeitos da radiação , Idoso de 80 Anos ou mais
12.
J Cosmet Dermatol ; 23(5): 1850-1861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38327116

RESUMO

BACKGROUND: The oxidative stress induced by ultraviolet (UV) radiation is a pivotal factor in skin aging and can even contribute to the development of skin cancer. AIM: This study explored the antioxidant effect and mechanism of water-soluble intracellular extract (WIE) of Desmodesmus sp.YT (YT), aiming to develop a natural antioxidant suitable for incorporation into cosmetics. METHODS: The study evaluated the scavenging capacity of YT-WIE against free radicals and assessed its impact on human skin fibroblasts (HSF) cell viability and UV resistance using Cell Counting Kit-8 (CCK-8). Transcriptome sequencing was employed to elucidate the mechanism of action, while RT-qPCR and western blot were used to validate the expression of key genes. RESULTS: YT-WIE displayed robust antioxidant activity, demonstrating potent scavenging abilities against 2,2-diphenyl-1-picrylhydrazyl (DPPH; IC50 = 0.55 mg mL-1), 2,2'-Azino-bis (3 ethylbenzothiazoline-6-sulfonic acid; ABTS; IC50 = 3.11 mg mL-1), Hydroxyl (·OH; IC50 = 2.21 mg mL-1), and Superoxide anion (O2 •-; IC50 = 0.98 mg mL-1). Furthermore, compared to the control group, the YT-WIE group exhibited an 89.30% enhancement in HSF viability and a 44.63% increase in survival rate post-UV irradiation. Significant upregulation of antioxidant genes (GCLC, GCLM, TXNRD1, HMOX1, NQO1) was observed with YT-WIE treatment at 400 µg mL-1, with fold increases ranging from 1.13 to 5.85 times. CONCLUSION: YT-WIE demonstrated considerable potential as an antioxidant, shielding human cells from undue oxidative stress triggered by external stimuli such as UV radiation. This suggests its promising application in cosmetics antioxidants.


Assuntos
Antioxidantes , Fibroblastos , Estresse Oxidativo , Pele , Raios Ultravioleta , Humanos , Fibroblastos/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Raios Ultravioleta/efeitos adversos , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Pele/citologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Água , Células Cultivadas
13.
J Cosmet Dermatol ; 23(5): 1745-1752, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372022

RESUMO

BACKGROUND: Chronic nonextreme sun exposure induces two mechanisms of skin pigmentation, causing immediate darkening and delayed tanning. A new molecule, 2-mercaptonicotinoyl glycine (2-MNG), has been shown in vitro to inhibit both immediate darkening and new melanin synthesis via covalent conjugation of the thiol group of 2-MNG to melanin precursors. OBJECTIVE: To evaluate 2-MNG in preventing both mechanisms in vivo. METHODS: In a randomized, intra-individual and controlled study, 33 subjects with melanin-rich skin were exposed to UV daylight on designated areas on the back and treated with a cosmetic formula containing 0.5% or 1% 2-MNG alone or 0.5% 2-MNG in association with lipohydroxy acid (LHA, 0.3%) plus Mexoryl-SX (MSX, 1.5%). The respective vehicles were used as controls and 4-n-butyl-resorcinol (4-n-BR, 2.5%) as a positive reference. RESULTS: 2-MNG alone significantly reduced immediate darkening and inhibited new melanin production when compared with vehicle, with higher performance at 1% than at 0.5%. 2-MNG at 0.5% in association with LHA and MSX showed significantly higher performance than 2-MNG 0.5% alone. 2-MNG at 0.5% and 1% showed significantly better performance than 4-n-BR. CONCLUSIONS: 2-MNG inhibited both UV-induced skin pigmentation mechanisms in vivo. The association of 2-MNG with LHA plus MSX showed the highest efficacy on melanin-rich skin with pigmentation induced by UV exposure.


Assuntos
Glicina , Pigmentação da Pele , Raios Ultravioleta , Humanos , Adulto , Raios Ultravioleta/efeitos adversos , Feminino , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/efeitos da radiação , Masculino , Glicina/farmacologia , Glicina/administração & dosagem , Glicina/análogos & derivados , Melaninas/efeitos da radiação , Voluntários Saudáveis , Adulto Jovem , Pessoa de Meia-Idade , Banho de Sol , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Pele/metabolismo
14.
J Cosmet Dermatol ; 23(5): 1518-1526, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409936

RESUMO

BACKGROUND: The skin is the largest organ in the human body, not only resisting the invasion of harmful substances, but also preventing the loss of moisture and nutrients. Maintaining skin homeostasis is a prerequisite for the proper functioning of the body. Any damage to the skin can lead to a decrease in local homeostasis, such as ultraviolet radiation, seasonal changes, and air pollution, which can damage the skin tissue and affect the function of the skin barrier. OBJECTIVE: This article reviews the maintenance mechanism and influencing factors of skin homeostasis and the symptoms of homeostasis imbalance. METHODS: We searched for articles published between 1990 and 2022 in English and Chinese using PubMed, Web of Science, CNKI, and other databases in the subject area of dermatology, using the following search terms in various combinations: "skin homeostasis," "skin barrier," and "unstable skin." Based on our results, we further refined our search criteria to include a series of common skin problems caused by the destruction of skin homeostasis and its treatments. Limitations include the lack of research on dermatological and cosmetic problems triggered by the disruption of skin homeostasis. RESULTS: This study describes the neuroendocrine-immune system, skin barrier structure, and skin metabolic system that maintain skin homeostasis. In addition, we discuss several common symptoms that occur when skin homeostasis is out of balance, such as dryness, redness, acne, sensitivity, and aging, and explain the mechanism of these symptoms. CONCLUSION: This article provides an update and review for students and practitioners, and provides a theoretical basis for the development of skin care products for the maintenance and repair of skin homeostasis.


Assuntos
Homeostase , Fenômenos Fisiológicos da Pele , Pele , Humanos , Homeostase/fisiologia , Pele/efeitos da radiação , Pele/metabolismo , Envelhecimento da Pele/fisiologia , Envelhecimento da Pele/efeitos da radiação , Dermatopatias/etiologia , Dermatopatias/terapia , Raios Ultravioleta/efeitos adversos
15.
Photochem Photobiol Sci ; 23(3): 517-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337129

RESUMO

Squamous cell carcinoma represents the second most common type of keratinocyte carcinoma with ultraviolet radiation (UVR) making up the primary risk factor. Oral photoprotection aims to reduce incidence rates through oral intake of photoprotective compounds. Recently, drug repurposing has gained traction as an interesting source of chemoprevention. Because of their reported photoprotective properties, we investigated the potential of bucillamine, carvedilol, metformin, and phenformin as photoprotective compounds following oral intake in UVR-exposed hairless mice. Tumour development was observed in all groups in response to UVR, with only the positive control (Nicotinamide) demonstrating a reduction in tumour incidence (23.8%). No change in tumour development was observed in the four repurposed drug groups compared to the UV control group, whereas nicotinamide significantly reduced carcinogenesis (P = 0.00012). Metformin treatment significantly reduced UVR-induced erythema (P = 0.012), bucillamine and phenformin increased dorsal pigmentation (P = 0.0013, and P = 0.0005), but no other photoprotective effect was observed across the repurposed groups. This study demonstrates that oral supplementation with bucillamine, carvedilol, metformin, or phenformin does not affect UVR-induced carcinogenesis in hairless mice.


Assuntos
Carcinoma de Células Escamosas , Cisteína/análogos & derivados , Neoplasias Cutâneas , Camundongos , Animais , Raios Ultravioleta , Carvedilol/farmacologia , Camundongos Pelados , Fenformin/farmacologia , Carcinoma de Células Escamosas/prevenção & controle , Carcinoma de Células Escamosas/etiologia , Carcinogênese/efeitos da radiação , Niacinamida/farmacologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Cutâneas/patologia , Pele/efeitos da radiação
16.
Photochem Photobiol Sci ; 23(2): 271-284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305951

RESUMO

Ultraviolet A (UVA) radiation, present in sunlight, can induce cell redox imbalance leading to cellular damage and even cell death, compromising skin health. Here, we evaluated the in vitro antioxidant and photochemoprotective effect of dithiothreitol (DTT). DTT neutralized the free radicals 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+), 2,2-diphenyl-1-picrylhydrazyl (DPPH·), and superoxide anion (O2·-) in in vitro assays, as well as the ferric ion (Fe3+) in the ferric reducing antioxidant power (FRAP) assay. We also evaluated the effect of DTT pre-treatment in L929 dermal fibroblasts and DTT (50 and 100 µM) led to greater cell viability following UVA-irradiation compared to cells that were untreated. Furthermore, the pre-treatment of cells with DTT prevented the increase of intracellular reactive oxygen species (ROS) production, including hydrogen peroxide (H2O2), lipid peroxidation, and DNA condensation, as well as the decrease in mitochondrial membrane potential (Δψm), that occurred following irradiation in untreated cells. The endogenous antioxidant system of cells was also improved in irradiated cells that were DTT pre-treated compared to the untreated cells, as the activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes remained as high as non-irradiated cells, while the activity levels were depleted in the untreated irradiated cells. Furthermore, DTT reduced necrosis in UVA-irradiated fibroblasts. Together, these results showed that DTT may have promising use in the prevention of skin photoaging and photodamage induced by UVA, as it provided photochemoprotection against the harmful effects of this radiation, reducing oxidative stress and cell death, due mainly to its antioxidant capacity.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ditiotreitol/farmacologia , Ditiotreitol/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Necrose , Fibroblastos
17.
J Cosmet Dermatol ; 23(5): 1541-1550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38196306

RESUMO

BACKGROUND: Microneedling (MN) and microcoring (MCT) are both methods used for percutaneous collagen induction. This minimally invasive technique involves creating controlled damage in cutaneous tissue to induce neocollagenesis and neoelastogenesis. MN utilizes solid microneedles and is commonly combined with radiofrequency (RF) to add thermal energy, while MCT involves hollow microneedles capable of removing excess tissue without inducing scar formation. AIMS: The purpose of this review was to summarize recent literature for MN and MCT, with the goal of assisting clinical decision making regarding the use of these technologies. METHODS: PubMed search was conducted for relevant articles published within the last 10 years. Scoping literature review was then performed with pertinent findings reported. RESULTS: Existing literature investigating MCT is sparse. Limited data on in vivo, human effects of this technology exist. Two out of 14 studies in this review pertained to MCT. CONCLUSION: Additional high-powered clinical studies are needed to guide future cosmetic treatments with MN and MCT.


Assuntos
Colágeno , Técnicas Cosméticas , Face , Pescoço , Agulhas , Humanos , Técnicas Cosméticas/instrumentação , Colágeno/administração & dosagem , Pele/efeitos da radiação , Pele/metabolismo , Rejuvenescimento , Envelhecimento da Pele/efeitos da radiação , 60575
18.
J Cosmet Dermatol ; 23(5): 1685-1702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38279521

RESUMO

BACKGROUND: Collagen, a critical structural protein found abundantly in animal skin and bones, has become increasingly recognized for its potential therapeutic role in skincare. Despite growing interest, the scientific evidence for the efficacy of collagen sheet masks remains limited. The principal objective of our study was to provide insights into the multifaceted role of collagen in skin health, with a specific focus on its application in collagen sheet masks. METHODS: The effects of a collagen sheet mask consisting of >92% native bovine collagen were investigated. The soluble protein components of the collagen matrix were analyzed and the influence of soluble collagen components on fibroblast regulation was examined. Scanning Electron Microscope (SEM) analysis was performed for structural analysis and effect on irritated skin. Five different clinical studies were conducted, including a comparison of the diversity of the skin microbiome, the tolerance and local irritating reactions in atopic dermatitis, an evaluation of skin redness after UV radiation, wrinkle reduction, and hydration and skin roughness of the collagen mask in comparison to a pre-soaked cellulose sheet mask. RESULTS: The collagen mask contains soluble protein components, including small collagen peptides. The mask showed potential for promoting fibroblast activity. SEM analysis showed a native collagen structure similar to human dermis. The mask maintained the skin microbiome diversity and decreased skin pH levels. It demonstrated good tolerability on both intact and lesional skin and had a significant effect in reducing erythema caused by UV radiation compared to other skincare products. It showed significant improvements in skin hydration and the volume of eye wrinkles and was more effective than pre-soaked cellulose sheet masks. CONCLUSION: Collagen sheet masks have the potential to positively impact skin health and appearance by increasing hydration, reducing erythema, minimizing wrinkles, and maintaining a healthy skin microbiome and skin barrier.


Assuntos
Colágeno , Envelhecimento da Pele , Pele , Humanos , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/microbiologia , Feminino , Adulto , Pessoa de Meia-Idade , Animais , Fibroblastos/efeitos dos fármacos , Dermatite Atópica , Bovinos , Eritema/etiologia , Eritema/prevenção & controle , Raios Ultravioleta/efeitos adversos , Masculino
19.
J Therm Biol ; 119: 103800, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295752

RESUMO

A detailed understanding of the coupled thermo-mechanical interaction on the biological tissue irradiated by a pulse laser is essential for the existed therapeutic methods constructed on the photo-thermal effect, which will contribute to the design, characterization and optimization of strategies for delivering better treatment. The aim of present work is to explore the coupled thermo-mechanical behavior of a multi-layered skin tissue with temperature-dependent physical properties under the pulsed laser irradiation. A layered theoretical model involved variable physical parameters with temperature has been proposed firstly according to the generalized theory of thermo-elasticity with dual-phase lag mechanism. The numerical method based on an explicit finite difference scheme is then employed to predict the temporal and spatial distributions of the temperature, thermal deformation and stresses experienced to a short-pulse laser irradiation. On this basis, the effect of variable thermal and mechanical physical parameters of skin tissue on the coupled thermo-mechanical behavior and relative thermal damage has been evaluated.


Assuntos
Lasers , Pele , Temperatura , Pele/efeitos da radiação , Modelos Teóricos , Luz
20.
Photodermatol Photoimmunol Photomed ; 40(1): e12943, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288770

RESUMO

BACKGROUND: The human skin microbiome is a dynamic ecosystem that plays an important role in skin health. The skin microbiome has been implicated in numerous diseases, and our knowledge surrounding it continues to evolve. A better understanding of the interactions between the environment and the skin microbiome will lead to improvements in skin health. METHODS: This article reviews the published literature surrounding the impact of ultraviolet radiation (UVR) and sunscreen on the skin microbiome. RESULTS: Skin microbes are differentially impacted by UVR, and alterations in the microbiome can be detected following UVR exposure. These changes are related to direct bactericidal effects, alterations in the cutaneous metabolome, and changes in the cutaneous immune system. UV filters used in sunscreen have been shown to have bactericidal effects, and many compounds used in sunscreen emulsions can also negatively impact cutaneous microbes. CONCLUSION: A healthy microbiome has been shown to produce compounds that help protect the skin from UVR, and sunscreen has the potential to reduce the diversity of the skin microbiome. This indicates that designing sunscreen products that both provide protection against UVR and preserve the skin microbiome may offer additional benefits to skin health when compared with traditional sunscreen products.


Assuntos
Protetores Solares , Raios Ultravioleta , Humanos , Protetores Solares/farmacologia , Raios Ultravioleta/efeitos adversos , Ecossistema , Pele/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...